

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B Tech I Year II Semester Supplementary Examinations October-2020

NETWORK ANALYSIS

(Electronics and communication Engineering)

Time: 3 hours

1

Max. Marks: 60

4M

8M

4M

8M

(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I

a 1. Define the following terms

(i) Branch (ii) Sub graph (iii) Node (iii) Tree & co-tree

b For the graph shown below find incidence and cut set matrices.

OR

2 a What is the condition for maximum power transfer to the load?b Find Thevenin's equivalent for the following circuit.

UNIT-II

- 3 a Define i) admittance, ii) impedance, iii) phase difference, iv) power factor
 4 A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz. Determine circuit current and power factor if R=40Ω, L=0.2H and C=50µF.
 4 a What is time constant? What are the time constants of series RL and RC circuits?
 4 M b Deduce the transient response source free series RC circuit.
 4 M b Deduce the transient response source free series RC circuit.
- 5 a Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel 5M R-L-C circuit.
 - **b** In a parallel resonance circuit (Tank circuit) $R=2\Omega$, L=1mH and $C=10\mu F$, Find the 7M Resonant frequency, Dynamic impedance and Bandwidth.

Q.P. Code: 16EE205

5M

^	D	
U	к	
~		

- 6 a Explain about dot convention in mutually coupled circuits:
 - **b** Show that the resonant frequency circuit $f_r^2 = f_1 f_2$ where f_1 and f_2 are the half power **7M** frequencies and f_r is the resonant frequency.

UNIT-IV

7 a Mention the condition for symmetry and reciprocity for z-parameters:
 6M
 6M
 6M

OR

8	What are the merits and demerits of state variable analysis:	
	b The transfer function of a system is $G(s)=4/(s+2)(s+4)$. Obtain a state varial representation for the system.	ole 8M
	UNIT-V	
9	a What is an m-derived filter? Explain the general configuration and parameters of	m- 10M
	derived low pass filter.	
	b Define filter:	2M
	OR	
10	a What is high pass filter? Explain the general configuration and parameters of contant-K-high pass filter.	fa 10M
	b Mention the properties of band pass filters:	2M

*** END ***

Page 2 of 2